THE INTELLIGENT FACTORY Building an Efficient MLOps Pipeline

HELLO!

I am Chi [Chaichana Thavornthaveekul] Data Scientist at Data Wow

MLOps Application

Definition of MLOps

MLOps at Data Wow

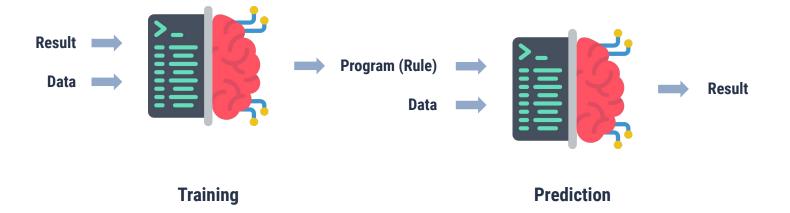
INTRODUCTION TO MACHINE LEARNING

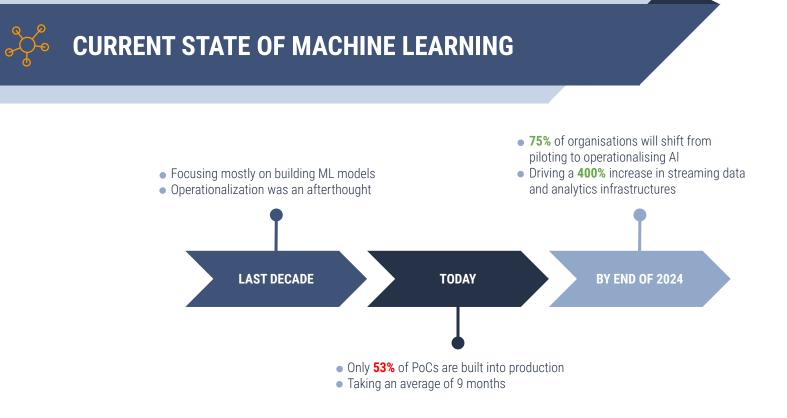
Traditional Programming

Machine Learning

Traditional Programming

Machine Learning





9

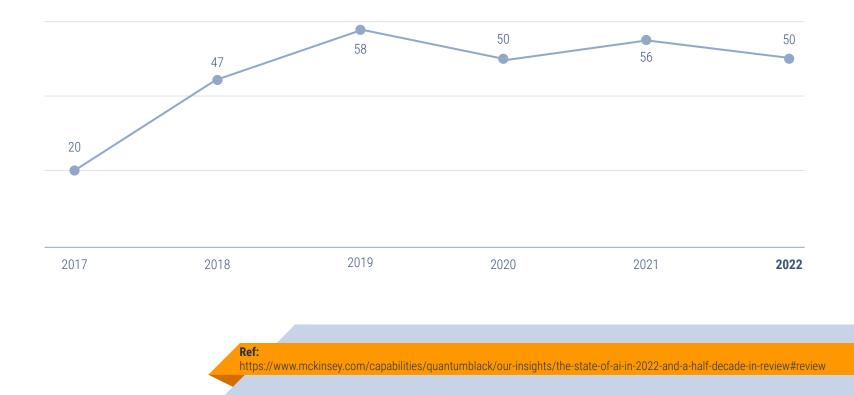
WHY MOST ML PROJECTS ARE NOT MADE INTO PRODUCTION?

with one data scientist

with **a large team** of data scientists, data engineer, ML engineer, software engineer, and DevOps

87% of data science projects will never make it into production

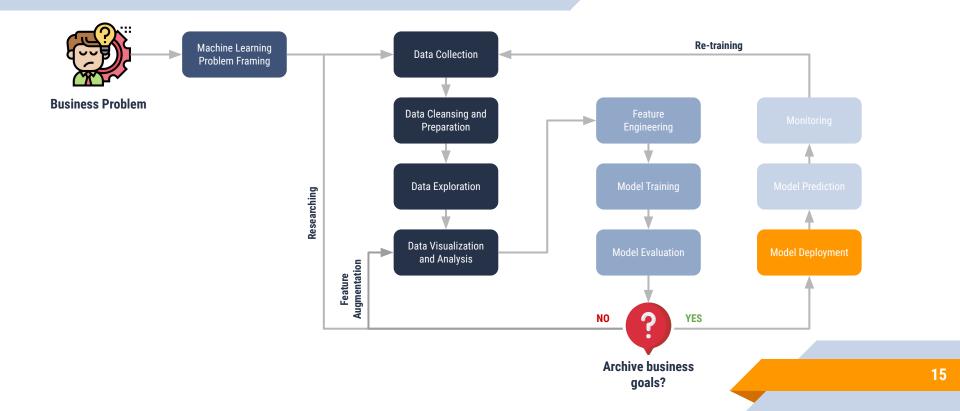
Share of respondents who say their organizations have adopted AI in at least one business unit, %

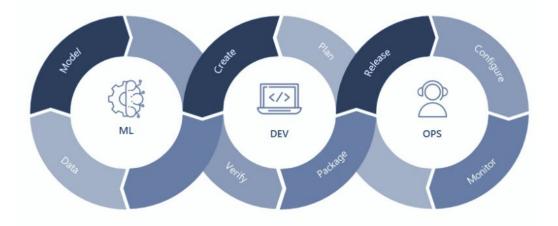


DEFINITION OF MLOPS

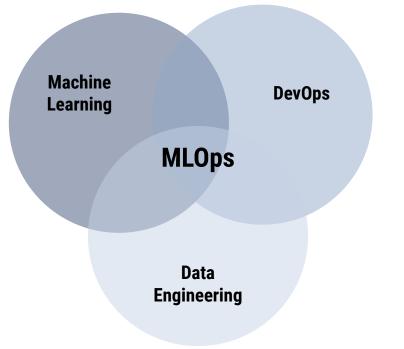
MLOps (Machine Learning Operations) is a paradigm, including aspects like best practices, sets of concepts, as well as a development culture when it comes to the end-to-end conceptualization, implementation, monitoring, deployment, and scalability of **machine learning** products

Source: Machine Learning Operations (MLOps): Overview, Definition, and Architecture (Kreuzberger et al., 2022)

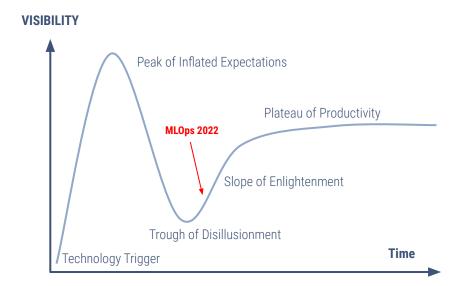




- Collaborative and experimental in nature
- Automate as much as possible
- Continuous improvement of ML models
- Standardize and Scale



Gartner Hype Cycle



- Continuous and faster deliveries
- Faster modifications
- Faster bug-fixing

Experiments

- Faster and Controlled
- Experiments
- Faster Integration of successful experiments to other environments

Scalability

- Ease integration of new ML model
- Standardization of code
- Lower operational costs

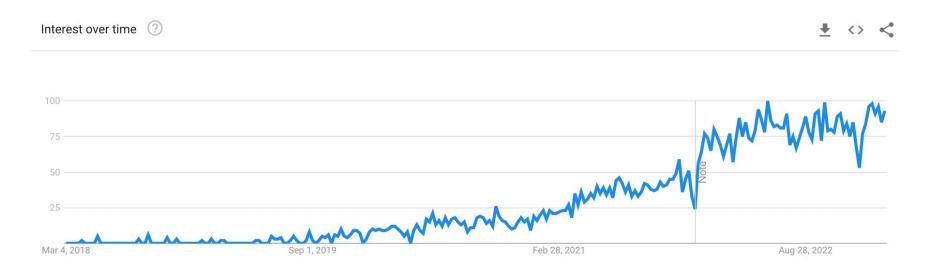
Time to Market

- Reduced time-to-market
- Faster planning and deliver expectations

Business Owners

- Strong collaboration
- Improve iterations

GOOGLE TRENDS (MLOps)



20

Unrealistic expectations Misleading success metrics

Data available Current study Data Drift

Infrastructure Monitoring

Logging & Tracing

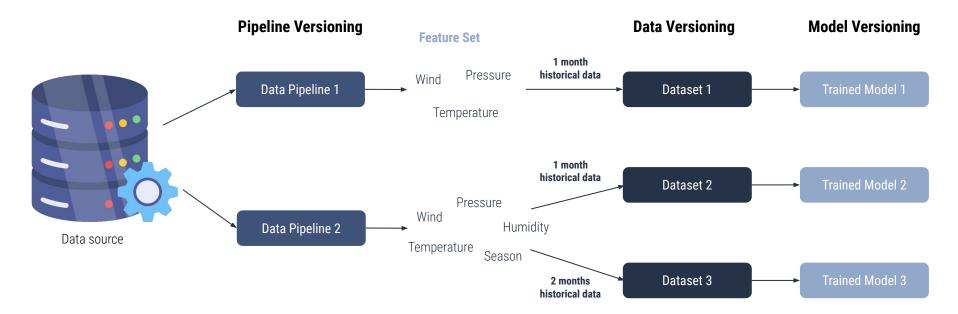
Many dependencies

Data consistency

Business need shift

Data/Pipeline/Model versioning

Dependencies

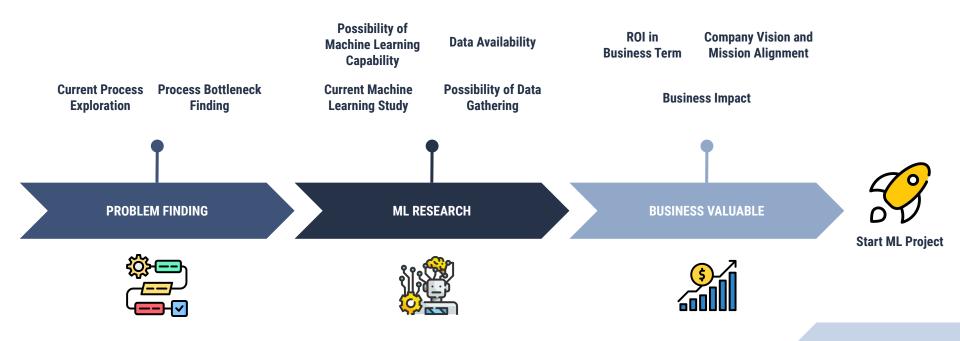


MLOPS APPLICATION

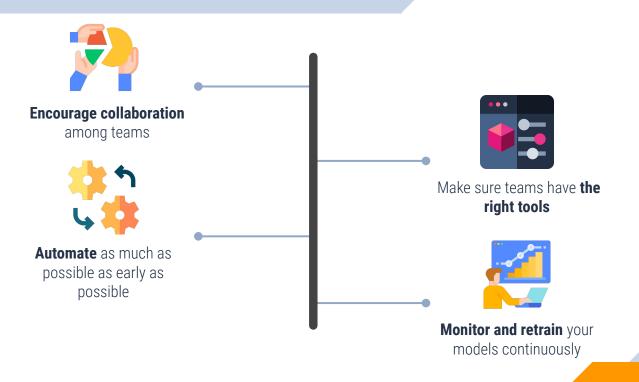
Don't be afraid to launch a product without machine learning

1st rule of Machine Learning's Google

START APPLYING ML TO CURRENT PROCESS



HOW DO WE KNOW ML PROJECT SHOULD START?

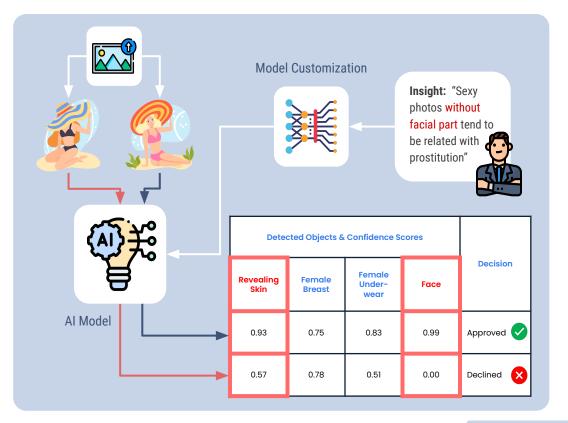


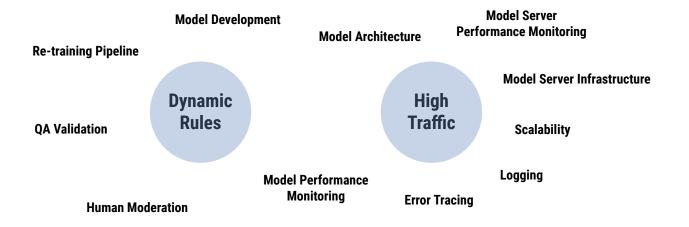
MLOPS AT DATA WOW

Posmoni Content Moderator

Business Requirements

- Dynamic set of rules
- More than 35 million accounts across all platforms and more than 4 million images every month!





●∎∎ ĻġJ

Data Preparation

Data Gathering: Application, Google Image Search, Public Dataset Data Cleansing Data Labeling: Accurately, RoboFlow, Label Studio

Model Development

Model Training: TensorFlow, PyTorch, Pre-trained Model, On-Premise Server (On-Cloud)

Model Evaluation

Model Versioning: Database, Data Table Format

Model Registry: DVC, Local Disk, AWS S3, Cloud Storage Experiment Tracking: TensorBoard,

Streamlit, WandB, MLflow, Kubeflow

Model Deployment

Model Prediction Development: GitHub (Code Version Control) Cl/CD: CircleCl, Jenkins Server: On-Cloud (AWS) Message Queue: SQS, KafKa Deployment: Kubernetes, Docker, Canary, Scaling, Load-balancing

aws

Maintaining

Re-training: Airflow (Pipeline) Model Performance Monitoring: Airflow (Weekly Data Extraction), Streamlit

Model Server Monitoring: New relic Logging & Tracing: New relic, Django + PostgreSQL

THANKS!

Any questions? You can find me at chaichana.t@datawow.io Chaichana Thavornthaveekul

Scan me

่ MLOps Made Simple เรื่องต้องรู้ เมื่อต้องจัดการ ML กับ คุณชัยชนะ ถาวรทวีกุล | Tech Monday

MLOps Made Simple เรื่องต้องรู้ เมื่อต้องจัดการ ML

Scan me

คุณชัยชนะ ถาวรทวีกุล | Data Scientist จาก Data Wow

EP.118